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SYMBOLS

z, y, z Cartesian co-ordinate axes

2a,2b,2c Length, depth, breadth of the prism

v Poisson's ratio

am, oa, Io~ Normal stress components in the x, y, z directions

2kj b, 2k 2C Lengths of loaded portion in the y and z directions

H-N~, Km, L1,, Fourier coefficients (Loading Antisymmetric in y)

1, m, NIndicies of the Fourier series (Loading Antisymmetric in y)

Rm,., K.1a, Lim Fourier coefficients (Loading Antisymmetric in z)

1, M, n Indicies of the Fourier series (Loading Antisymmetric in z)

f (y, Z) Stress distribution function on the faces x ±a



1. INTRODUCTION

The stress distribution in rectangular prisms subjected to certain normal end fnrces

on its two opposite faces is a fundamental problem in Applied Mechanics. Reference Ill

supplies a method for calculating a symmetric end loading, assuming that the bulk stress

(a + av + o',) on a lateral surface of the rectangular prism is known (i.e. measurable).

Such a measurement could be obtained using advanced thermal emission techniques. The

aim of this paper is to extend this concept to the case where an antisymmetric end loading

is applied.

A method for calculating the bulk stresses for a given antisymmetric end loading is

presented in (2]. This will be referred to as the Direct solution. In the Inverse method

the end loading will be determined from a known distribution of bulk stress values on a

lateral surface. In this case, bulk stresses on the lateral surface will be simulated using

the Direct solution.

Figure 1 shows the orientation of the rectangular prism under consideration. The

equations supplied in [2] allow calculation of the stress distribution on a lateral surface

for an applied loading which is antisymmetric in y and symmetric in z and z. This paper

extends this solution to calculate the stress distribution on the same lateral surface for a

loading antisymmetric in z and symmetric in z and y. Inverse solutions for both loading

cases have been derived. A single Inverse solution could be used to determine a loading

antisymmetric in y from the stress distribution on the face y = 6, or to determine R_

loading antisymmetric in z from the stress distribution on the face z = c. However, two

separate solutions are neccessary to determine the applied antisymmetric loading if only

one lateral surface is available (or has been prepared) for bulk stress measurement by

thermal emission.
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2. DIRECT SOLUTION

The bulk stresses on the surface y~ + 6 are required for the case of a rectangular

prism subjected to certain end forces. The two end loading cases considered are:

(1) Loading antisyrnmetric in y, symmetric in x and z

(2) Loading antisymmetric in z, symmetric in x and y

2.1 Loading Antisymmetric in Y

First define the Galerkin vector F.

F = iF, +jF, + kF,

where

F.= Q3Z Hjwa [av cosh amxt - (2v + ctMa coth am~a) sinh ctM~3x x
M n , cosh amfta

x Cos nzsin y

F,= 3 (,3sinhi/3,..b - (2P~ + /3~b tanh P3.,b) cosh 13,,yJ x

nwrz 17r x
x Cos - Cos -

c a

Z -y, LiMc [izcohym - (2v + V~Mc coth-yMc) sinh -ymz] x
1M 7 imcoshyMcIzch)Iz

17rX M7
x cos -sin -~r

andi a 2b

Q2 MT2 n 2

(fl)2 +(17)2

where

1, n=0,1, 2,3... and M 1, 3,5, 7...



The stress components a. and -r, are then related to F by the following equations.

=2(1-v) V2F.+ (,V2 - _ divF, (2)

Tyz = ) (1 V ) F, + a - -92div F. (3)

This gives:

E E ,a(1I + aM~a coth ckM~a) cosh ax aM~x sinh a2m~z]
M nc

× sin -- Co s - -y . si ,b 2 v n 21r2 sin h )3 .,y + l c 2

]1 nrz Ir
x 1(1 - .btanh fl.1b) sinh Sy + fl,y coshC,,y Cos n Cos Ia

+ EZ -Mb2 f coshz 7 z+ Irb)2 [(1 - y1ccoth7,AMc)

x cosh 7YMz "+ yiMz sinh -yMzj cos - sin 2b (4)

HM~aMnr
2  [

2a4Mbcosh aa[1 - (2v + aMa coth aM.na)] cosh amx

+a~f~1
3,sjY~ sinh fi.n,

+ck.z sinh .~zj cos b sm +L 13,ic sinh f,,b [ " y sinh 0.1y

-/,btanhf,3bcoshO.jy sin ---- cos -rX + F 2,MbcoshL M c

x~r 1 _x [-lmc coth 7yMc sinh /3Mz - 7yMz coshylmz sin -b Cos a (5)

Expressions for ao, ,z and r.,, can be written in a similar manner.

With reference to Figure 1, the following boundary conditions apply.

on y=+b; ay =0, 0-,f,,=O and rv=O,
on z=±c; ,= 0, rz.zO and r.,=O,

on X= ±a; a. f 2 (y,z), r.,=0 and r2.=O. (6)
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All the shear stress boundary conditions are exactiy satisfied by (5) and similar ex-

pressions for -. , and rz. The normal stress boundary conditions are approximately

satisfied by equating low order Fourier terms in equation (4), and in similar expressions

for a. and o,. Taking the double Fourier transforms of these three equations (with their

approximated normal stress boundary conditions) gives the expressions (7),(8) and (9).

4Hm,.6 1 tanhau a(--1)1+(M- 1)/2J nIra) ( .2  
2 

2 + 127r2 )2  .a+2,2)

+ -M2") I3 (2  sinh2o3, 1b)

4L,,3 tanh mwC(-1) " +(M - I ) / 2 [, 2 + 712 r2 )
+M I

M -tzmb(-7?MC2 + n 2ir2 )2  [5ka)Y
+ M7c)2 n 2 =0 (7)

where

61=2 when n=O, 61=1 when n#O

62=2 when n=O or 1=0, 62=1 when n$O, I-90

63=2 when 1=0, 63=1 when lO

4HM tanh ctsma(-1)' [(Mwa) 2 (. 2  + 2 r)
cz c1c(a 2a

2 + 12 ir2 )
2  2 ' an M z

( nra) 212xr2j + 1: 4AKn161 coth O,1b(_j)n+(MlI)/
2

11 f.cf3 1b2 + M21j 2

[( b ) ( fl26 M 27r2) + ( nrb)2 M 2 72]

+ LIM6i I + 2"c 0(8)k sinh2-ylmc)

where

b1=2 when 1=0, 6= when l0



H,,i 1 + 2am,a ) 4K.j 1 cothI3.i 1 -1)'+(M -') / 2

where

sinh 2aM,.a 0.1+.I~a20 + M-]

[()2(. ) + ( Ilr ) I M21r2}

[(n 212 f +, Mnyr n-

J 4 LM tanhy-c()1 n-Mrc 2  -,2 2y 2)
Ya(ac

2 + n2w2 )2

+ (-
2

2-2] J.. (9)

where

b1=2 when n=0, bj=1 when n:AO

and

j +bj+C MirY r-

Equations (7),(8) and (9) may then be solved simultaneously for the unknown Fourier

coefficients. The stress at any point in the prism may then be calculated by substituting

the Fourier coefficients into equations (4),(5) and similar.

Since the given equations are valid only for self equilibrating end loads, it is necessary

to modify the required end loading f(y, z) so that the net force and moment acting on

each end face is zero. This produces a modified loading distribution f2(y, z).

(Y, Z) = ' [ z,)-_3My (0
4cb3 j(0

where M is the total moment due to f(y, z), i.e.

f+b +C

M = f f( y , z)y dy dz (11)

The previous equations calculate the stresses due to the modified loading f2(y, z). The

stress component o,, calculated from equation (4), is a Fourier series approximation to

5



2.2 Loading Antisymmetric in Z

Again define the Galerkin vector F.

F = iF. +jF, + kF,

where

F. ,Z , s CXNa - (2v + aNacotha,,.Ma)sinh .,.Nzix
mN

×cos m ry sin N--
b 2c

Zy y K,,b
= N I 3 co3 M [Omy cosh Otly - (2- + Omb coth Omb) sinh)3N~yi x

N I ",coh m

r . Nirzx cos -- sin -
a 2c

F2  
2 Z~ 2

1 ,

t L -[,zsn7,z(2vt 7, ctanh~t.,c)coshT. z] ×

hirz miry
x cos -+ c-

b band

(=l7)2+ (-Jr)2i
0,2 Ni r 2 / r2

a + b(12)

where

,m= 0,1,2,3... and N =1,3,5,7...

m6



Substituting these equations into equations (2) and (3) gives:

/7 E -Na [(1 + o.,aNa coth xN,,,a) cosh a,,z - a-,IN sinh a..J
N- cosh ctNa

Nirz r N 2  lc2
"xCos 6 -sin--2c-. + ~fccohzb 2vE!--cosh3Ni,+ -K

i ] Niz 17rx

" [(1 - flMb coth I3 Mb) cosh 0,y + fl3ay sinh I31y]1 sin . cos

+ L,_c ~2vm 2 7r2 sinh -ylz + (brb ) 2 [1-) 7 1 tn~z,
+~~2 2 aih-i

x sinhyi- z + ql, z cosh j.7 1z s -r- mry (13)

H'- amN r
2

TV - . c cosh -a - (2v + a,,,i coth a-Na)] cosh a,,
mnN 2a_,bcc saNya

+ Q-NXsinhr aq2 Nz to KsNnrb f+. ycosh Om y
I Cos 2c b N I 20mccosh13mb
1 Nrz hrx Llmrc

- fOmbcoth 6mbsinh13ffiy Cos Nz Cos - + 
2 .bsinh c

2c a E Evn -sih(c

X 7Im ,z sinh -ylz - 1,c tanhjj-,c, osh -ye,,z sin b cos (a 14)

Again, expressions for a.Iaz ,rz and T., can be written in a similar manner.

The boundary conditions of (6) still apply, with the exception that f3(y, z) is now used

to denote the modified applied loading, i.e.

on y =:±b; a , r=, ,)=0 and r,-=O,

on z=±c; or-, =r,=0 and -rv=0,

on z=+a; a.= 3(y,z), r,, 
0 and r=.O0. (15)
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Again, all the shear stress boundary conditions are automatically satisfied by (14)

and similar expressions for r, and Tr2 . The normal stress boundary conditions are ap-

proximately satisfied by equating low order Fourier terms in equation (13), and in similar

expressions for a, and a,. Taking the double Fourier transforms of these three equa-

tions (with their app:oximated normal stress boundary conditions) gives the expressions

(16),(17) and (18).

4H , tanh atNa(- )+m [( ( Nira 2

+ (- )2l22] + K'6'(1 + sin20-,b)

4L,,.b1 coth 7y c(- 1)m+(N - l)/
2 

[(7rc) 2 2 2 N2 , 2

[+y rn ym[ C2 +~j

M(16)

where

61i2 when 1=0, 61=1 when 1540

z 4H,,jbi tanhaINa_)'-, ) [v(mnra )(2 2a
2 

+ 12
7r

2 )
N a_,c(a_2,a2 + 12

7r
2 )2  b (

Nra ) 21 r2l + : 4KNI62 tanh /3b(-1)m+(N-1)/2

+(L 2c 2 3N+0 > 6cnb2 +M2 r2 )2
N

x (j3% 2 + in2 ,r
2) + ( Nirb)2

2 2

[,,("rb)'( ,3,,cr

+ Lsinh2,,c - (17)

where

b1= 2  when mr=O, 61=1 when m:nO

62=2 when 1=O, b2 = 1 when 1#0
63=2 when m=O or 1=-0, 63=1 when mi$O, 1#O
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(1 _N ) 2+,. 4KNI tanh#Nvab(-1)1+ fn

H-i (1 + h2 h faivza(f3?Pb2 + m
2w 2 )2

( N ) 2 ,~) 
2 ~ i 2XL 2c a i

+z4L#-,.6 coth Y,,C(-1)1+(N-1)/ 2 [VM \e2 (22 N 2 7r2 )
" E[y2 + ] 2  b k't +m

" (1c 2 N 2r2] - N (18)

where

,=2 when 1=0, 51=1 when 100

and

1 [+b _+C rnrry Nlrz
J.,N ="a- b f3(y,'z) cos- sin--- dy d

_ b f+C 2c

Equations (16),(17) and (18) may then be solved simultaneously for the unknown

Fourier coefficients. The stress at any point in the prism may then be calculated by

substituting the Fourier coefficients into equations (13),(14) and similar.

The required end loading f(y,z) must again be modified so that the net force and

moment acting on each end face is zero. This produces a modified loading distribution

f3(y, z).

[ 3M~ 1
f3(y,z)= f(Z)- 4M- (19)

where M is the total moment due to f(y, z), i.e.

_+b +c

M = b cf(y, z)z dy dz (20)

The previous equations calculate the stresses due to the modified loading fs(y, z). The

stress component a, calculated from equation (13), is a Fourier series approximation to

h (y,z).

9



3. INVERSE SOLUTION

The main aim of this section is to provide an Inverse solution to the problem, which

involves calculation of the end stress a, from the known bulk stress distribution (a, +

or, + az) on one lateral surface of the prism. Consider the case when we know the bulk

stress distribution on the surface Y = +b. On this surface, a, = 0, and so the bulk stress

is a + a2 . As for the Direct solution, two loading cases are considered, i.e.

(1) Loading antisymmetric in y, symmetric in x and z

(2) Loading antisymmetric in z, symmetric in x and y

3.1 Loading Antisymmetric in Y

By summing equation (4), and a similar equation for a2 , the following expression for

the bulk stress is obtained.

-b =E HM a f{(1 + Qknacothdtva)cosh mx- aMx sinh amx
M ncoshat 

o

iMry csnrzr- C2 Knb 2vn W2sn .y+ irc~ 2

2bin.j- c n 3 2 hi ~i~sinhniy +

x {(1 - flabtanhAnb) sinhb3ip + Nnzjcosh/3nzy}} cos - cos

+ SE 2y ,coc 2v Mt coshy, Mz + Qr- { (1 - Tyhc coth'y~mc)

1 in. Mrx cosh 7wiz + 7Zuz sinh 7Az cos a sin2

L 5 c I (1 + ^yIMccothyMc) cosh -yMZ - -yIMZ inh y~M2}
+ M cosh -vIMc

lw: Ary 4  r H,Sa FM 2 r2  
(nb\2xco -r nn- I o. couo. c w  oshaM.. +,

M

( aM.acothaM,,a)coshAM,. + s 7 Mic p s n
x cosasin j -+ M ,sinha w Ma sin 4 c o s

MJ 2m16'cs c

nzi3L~a 2 sinhf31 b [2/trsn/.P+, (fct~ ((1 - (.,btanh3,,,)

x sinh ,p + a ?,, cosh 3 ,} cos + cos . (21)
c a

r W

,, Binh #,,Iy + fy c y COSm ni zI COSX(21)



By taking the Fourier transform of this equation, as shown in Appendix A, the following

results are obtained.

I jf + a)b cos b cos d d zdz

4H m ,6 ( 1) +(M -)D/2  3 1I f M 2i'r 2  [ 2 ( 1,r) ]b[',+ L_22 I M ~ ~ + k .b iV4a.
M bM ,+!~~ a ~

+ (,b )2 (1,r)211tn S,

+ j463LIM(- 1)?n+(M-I)I2 [-. 1 f(i212)[ 2j
M b [-.2 + (A)2

+ (1i) (n)}1] tanh -Ic

+ K,, 2 n-2-(anA + c212)(2v + 1-)3,btanhl/3.1b+ 3,,1bcoth3.,1b) (22)/3a 2
c2

where
61 =2 when n=0, 61=1 when ni0
62=2 when n=0 or 1=0, 62=1 when n#0, i#0
63=2 when 1=0, b3=1 when I#0

Equation (22) may then be applied for each value of n and I to give a set of linear

simultaneous equations with the Fourier coefficients HUn, &Ia and Lim as the unknowns.

Since the boundary conditions of equation (6) still apply, equations (7) and (8) are also

used in conjunction with (22). In effect, equation (22) replaces equation (9) for the Inverse

solution. This imposes the restriction that I = (M - 1)/2, so that the number of linear

equations produced by (7) (8) and (22) equals the number of unknown Fourier coefficients.

The resulting set of equations is then solved to produce a set of Fourier coefficients Hu,,

K, and LiM for the Inverse problem. Equation (4) is then used to obtain the applied

stress o,.

i1
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3.2 Loading Antisynmetric in Z

By summing equation (13), and a similar equ~ation for a~, the following expression for

the bulk stress is obtained.

Z'=, c , _ { (1 + Oa.Na coth a..jma) cosh a,,vx - ctNx~ sinh a,Nx

X o *r i Nirz +--- Kmb 2 N2
,w
2 silm Ilirc\ 2

b 2c---sn-- N 6,2, 3?c 2 coshfl,,Nb1 42 acs/,~

x f{(I - 3bcoth,6I3 b) cosh f3my ± 13m-y sinh ffly) Nrz CBr

+L 1.-c [2vm2 ir 2sinhblz± j){ -,,.tnv 1 ,c

in b sinh~m~ 7+ . 1 ~ (a csml

+ E E L {- (1 -- ,,ctalhymc) sinh-yj.z - jz cosh-yzz

X CS ir COS WYHmNa ~2'2 r oh ct.N t- 2

ao +~ a2fl b2 cosh aZNa 2

X {(1 v -mMcoth a-ma) coshk,,jNz + c-v sinh c-z co Sil Nwz
2 c

+ ZK32o 1b 2vl2 r2 cosh ONIY (!La) {(I -13bcoth/3,wb)

11 .Nirz lirz
xcosh13my + OlaysinhM} Ora Sini 0 CS (23)

12



By taking the Fourier transform of this equation, as shown in Appendix B, the following

results are obtained.

[--- C /+fGa°" 2cz  
N

c + oz) sb COS sin dx dz

ab2N(f) a ,~b 2c'~'

±, ('+,) (])'}] tanha,,,N

461HL,,(, 1)m+(vi[)/ + 1. {vr2 . +1(r)2]
+, (L.) 2] C- /M7

+ (~r )2 (N,)21] taothct,,c

+-ff b 7?. + (- ) -a,b

/3 ,m(la+(Vc2 / _La ( ,r 24)

+/ abc------- 4 + ]c (2v+t-n bcoth3mb+3mbtanh)3mb) (24)

where

61=2 when 1=0, 61=1 when 150

As for the case of an applied loading antisymmetric in y, a set of Fourier coefficients

HmN, Kw and LI. may be found by solving the set of simultaneous equations produced

by (16),(17) and (24). Equation (13) is then used to obtain the applied stress ar.

13



4. RESULTS AND DISCUSSION

The Direct and Inverse programs were implemented using FORTRAN 77 on an Apollo

DN10000 computer. The Gaussian Quadrature method was used for the integrations

required by equations (9),(18),(22) and (24). The resulting sets of linear simultaneous

equations were solved using Gaussian elimination with full pivoting. Double precision

was used for all calculations.

4.1 Direct Results

The equations given in the previous sections are applicable to a prism with an arbitrary

rectangular cross section. However, for illustrative purposes, a square cross section with

a square loading area was considered, where b = c = 2 and kj = k2 = 0.5. First consider

a loading symmetric in z and V, and antisymmetric in z. With reference to Figure 3, a

stress of f(y, z) = ±16 was applied inside the loading area, with f(y, z) = 0 outside the

loaded area. Equations (19) and (20) must first be used to produce a self-equilibrating

loading f3(y, z) on the end face. From (20) the total moment is:

+c !+b

M f(y, z)z d dz
fc fb

I+kzb FfO +k2c
-' /II-16zdz+fJ 16zdz, dy+0

'-klb -Ic 2-C

16k'c 22klb

- 32k2klbc
2

14



Applying (19) gives the modified loading function.

[ 3Mz
f~(p~z)= ~ 4bc3 J

= ~~)-24Ic'kiz
c

= f(y,z) - 1.5z

Hence,

f3(y, z) = -1.5z outside the loading area

= +16 - 1.5z inside the loading area, 0 < z < k2 c

- -16 - 1.5z inside the loading area, - k2c S z < 0

Sample results from the Direct method for an applied loading antisymmetric in z are

shown in Figure 4. Plots of the bulk stress distribution on the y = +b surface and the

end stress a,, are presented. These results were obtained using seven terms of the Fourier

series (i.e. I, m = 0, 1, ...7 and N = 1,3, ...15), which showed good convergence. Shown in

Figure 4a is the surface plot of a., with its corresponding values indicated in the contour

plot, Figure 4b. The plots show the stress values ranging from -18.0 to +18.0, in good

agreement with the applied stress field f 3(y, z). The bulk stress distribution ob on the

y = +b surface is shown in Figures 4c and 4d.

Similar results are shown in Figure 5 for an applied loading which is antisymmetric

in y, but symmetric in z and z. The modified loading function f2(y, z), produced by

equations (10) and (11) is shown in Figure 2 as:

f2(y, z) = -1.5y outside the loading area

= +16 - 1.5y inside the loading area, 0 < y < k1b

= -16 - 1.5y inside the loading area, - k1b < y < 0

15



4.2 Inverse Results

In the Inverse problem, the bulk stress field, generated by the Direct method, is used

to calculate the applied end stress. For comparison, the results of the stress distribution

o-r obtained from both the Direct and Inverse methods, at different Fourier indicies, are

presented. Figure 6 shows the results obtained for an applied loading antisymmetric in z,

symmetric in z and y. Figure 7 shows similar results for an applied loading antisymmetric

in y, symmetric in x and z.

Reference [1] presented similar results for the stress distribution for a prism with

symmetric end loads. It also demonstrated that more Gauss points are needed for numeric

integration to obtain a reasonable Inverse solution for a high number of Fourier coefficients.

The antisymmetric solution showed a similar trend. The results presented in Figures 6

and 7 use the minimum number of Gauss points to obtain a reasonable solution. Further

increases in the number of Fourier coefficients and Gauss points were not warranted for

preliminary work due to the large increase in computer resources required.

5. CONCLUSION

This work has successfully extended previous work on the stress distribution in rect-

angular prisms to include the case of antisymmetric end loading. This distribution may

be calculated from a set of bulk stress measurements on one lateral surface of the prism.

Analysis has been performed for the case where the bulk stress distribution used in the

Inverse method was produced by the Direct method.

Although the concept has been successfully proven, a considerable amount of work

will be required to extend this methodology to a procedure which can be routinely used

for the analysis of thermoelastic measurements from real structures.

j 16
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2k~c

FIG. 1 RECTANGULAR PRISM WITH CENTRAL LOADING

124, :) = +16- -15Y,<y :5 $ k, b

FIG. 2 APPLIED LOADING ANTISYMMETRIC IN Y

I : :* 1,4w,:) = +16 - 1.5z, 0<5: f- i~c

x = -16 -1.3-, - k2c < z < 0

z

FIG. 3 APPLIED LOADING ANTISYMMETRIC IN Z



Fig. 4& Applied End Loading Fig. 4c Bulk Stress on y b

.~ ~Iif

Fig. 4b Applied End Loading 
Fig. 4d Bulk Stress on y b <

FIG. 4 DIRECT SOLUTION FOR APPLIED LOADING
ANTISYMMETRIC IN Z



Fig. 5a Applied End Loading Fig. 5c Bulk Stress on y b

Fig. 6b Applied End Loading Fig. 5d Bulk Stress on y'=

FIG. 5 DIRECT SOLUTION FOR APPLIED LOADING
ANTISYMMETRIC IN Y
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Direct Solution Inverse Solution

Fig 6a. 1, m = 0, 1; N = 1, 3. Two point integration.

Direct Solution Inverse Solution

Fig 6b. , m =0, 1,2; N =1, 3, 5. Two point integration.

Direct Solution Inverse Solution

Fig 6c. 1, m = 0, 1.3; N = 1, 3...7. Three point integration.

Direct Solution Inverse Solution

Fig 6d. 1, in 0, 1 ... 4; N =1, 3-.9. Four point integration.



Direct Solution Inverse Solution

Fig 6e. 1, m=O, 1... 5; N =1,3 ... 11. Four point integration.

Direct Solution Inverse Solution

Fig 6f. l, m =0, 1 ... 6; N = 1,3...13. Five point integration.

Direct Solution Inverse Solution

Fig 6g. l,m =0,l ... 7; N = 1,3...15, Five point integration.

FIG. 6 DIRECT AND INVERSE SOLUTIONS FOR APPLIED
LOADING ANTISYMMETRIC IN Z



Direct Solution Inv'erse Solution

Fig 7a. 1,u n 0, 1; M =1, 3. Two point integration.

Direct Solution Inverse Solution

Fig 7b. 1, n = 0, 1, 2; M = 1, 3, 5. Two point integration.

Direct Solution Inverse Solution

Fig 7c. 1, n =0, 1 ... 3; M =l,3 ... 7. Three point integration.

Direct Solution Inverse Solution

Fig 7d. 1,n =0,1-..4; M =1,3 ... 9. Four point integration.



Direct Solution Inverse Solution

Fig 7Ye. 1, n = 0, 1 ... 5; M = 1,3 ... 11. Four point integration.

Direct Solution Inverse Solution

Fig 7f. 1, n =0,l.-6; M =1, 3-13. Five point integration.

Direct Solution Inverse Solution

Fig 7Yg. 1,nr = 0, 1... 7; M = 1,3 ... 15. Five point integration.

FIG. 7 DIRECT AND INVERSE SOLUTIONS FOR APPLIED
LOADING ANTISYMMETRIC IN Y



APPENDIX A

DERIVATION OF EQUATION (22)

From Equation (21)

z ., '! (1 + a,aocothaoa) cosha , - *,..x sink am }
M .'sha

sin -Co - hrc)if3y
2b c 6!3,c

2
sinh,.,~b1

" fI 9.bt.h.,~snhgyAycsh..l]Cos 
- -0Cs a

z c r2.M2712 cosh,,., +- (jir)2 {(1 -7,C~h'C
M ,

2 cosh-y.c 1 4(

x cosh,.z 4 - co sin- ,z1 oL- nMr
a 2b

+E : Co~;c (1 + V,,c coth y,mc) cosh-y,,z - y, sinh y,,4 z

un Mo iZS, !,y +Hff..a [2- M
2ir

2
C.h. ,(nrb\

a b M a 2
Vcoshua 4

x {(1- a~fa coth oa) coshaG.,,.W Gxsink .a}J sin S 2b s

x sih0,, , coshQ
2 

]CsnzCos r

On a lateral surface of y = b, o-y = 0 and so the bulk stress on this surface becomes 0'6
a + oz. Putting y = b into the above equation, and noting that sin K (_)(M-1)12
for M 1,3,5..., yields the following result.
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+ ~ . F, 2 "' tanh ,3.h

x sinhj3,,b + &abcOsh,6.b} COS - COS - (II

L,.c(-1) 1
) 2 M

2
r

2  IrLb)2 
{1-Vu~ty.c

IM IfW6 osh.Wc 42
I aoh~~
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)x cashf u + ,lz sinh -f 1,z 1]Cos - (111)
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Hu__________ M 2rb\)
2

MEF cs,.b
2

coh 2v c,.ha,,ax 4 -- ) j(I - a. acoth a.,.a)
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+ ~~Ii~ii i9,27a2sinh)b[2z 32ifh,b + (~){I- I3,.,b tanh&3,b)

x sinh 03,,,b + #,.,b cosh), bCos !- Cos - (VI)
JJ C a

To determine the Fourier coefficients Hmn, K,,1 and LLim it is necessary to take the double
Fourier transform of the above equation.

(or. + a) cos Erxcos !Zdx dz

(1 p) + (11) + (111) + (IV) + (V) + (VI)jos- cos 11zdz d:

Note that p and q are now fixed positive integers.
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Integrating the RHS, taking term (1)

[f~(1) cos -cos ! dc dz
a C

SH..(1()I 1a,a oth a.a) 4coshmzs dia
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cos akM.a _)2an M.a

Put I am p+n ipifogv

2a2=a - ) tanh (-I) -W..ah m

M Q.2 whn+O =1we #

+ 4

I(.,abd2 a.2 2

c a aI, v W ihA ,C 2tI-3,b~h .b0.2,C2sinh 0,,b -
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where

b2=2 when n=0 or 1=0, 62=1 when n540, i 4O

Taking term (III)

+cp+a x qwz
(1)cos - cos !-dz dz

a c

_____________2 F M M2 
r
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- Llm ac2 12 1+M-2 f 2 0 + (- 2r tanhy,.c
M y,mb2[-12I+I~ n)2 4 +\(a-)

where

63=2 when 1=0, 61=1 when 1540
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The integrals of parts (IV) (V) and (VI) were derived using the same approach as showli
in (I) (II) and (III).

+a _ (IV )cos c s z dz

a C

_+- f+& tanh

/' J- (V)cos-- os~dzdzc

J (VI) cos cos z d dz

a C

-K ,bc6 [ 2i2 n+(M)2  
M2,,

where
6 z = 2  when n=O, 61 = 1 when n$O
62--2 when n= or 1=0, 6c-1 when n i.2

6c 2 when 1=0, 6 3= when 1$0

Iii

' , . . . ., , 0 .,,- , , ),, , a a - 0 ,ib
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The individual integral components may now be summed to give the following.
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DERIVATION OF EQUATION (24)

From Equation (23)

af.+oY H-" ah ,.N{+aNacothaNa)CO~ha-NX O.a-NxsifhO-NZ
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2 (os rC)
2

"Csb sn2c )N C2 ~3coshIqb 2L,4 hom +3
N(y a

" t(1 - ONwbcoth~3Nb) cashja Y+ Oqysinh3Ny} SnTZ 1r

+ ~ j~bLinh'jc j2vm2wr sinh-I.j~z + (Irb) 2 
{1--yj,,c tanh ji-c)

sinh -c h~snh~,z-~ ahj

xsinh-yl zL'mir oshsha~z I+zi-r
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2

C coho-Nl~ Na) {(1 2

x cosh3Any+ mysinh ta ysi NirzCo w
2 1]~~i 2C a

On a lateral surface of y = b, uo, = 0 and so the bulk stress on this surface becomes

Orb = 9 + C . Putting y = b into the above equation, and noting that cosmr
for m =0, 1,2..., yields the following result.
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3
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To determine the Fourier coefficients H'N, KNI and L1, it is necessary to take the double
Fourier transform of the above equation.

( + a,)cos- sin 2W" dx d:

= + (1H) + (i11) + (IV) + (V) + (VI) Ecs- sin I dz d:

Note that p and Q are now fixed positive integers.

.1
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Integrating the RHS, taking term (1)
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Taking term (11)
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where

bi=2 when 1=0, t5i=1 when l#~O

Taking term (III)

+ +C a . Q
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The integrals of parts (IV) (V) and (VI) were dorived using the same approach as shown
in (1) (HI) and (111).

IV) cos ?i sin -d dz
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c Q
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where

61=2 when l=O, 61=1 when i#O
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The individual integral components may now be summed to give the following.

L J+[(1) + (11) + (111) + (IV) + (V) + (VI)} cos sin!91r dz dz
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Simplifying this equation gives the following result, as presented in equation (24).
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